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4. Rationale:  
Tobacco smoking is the single leading cause of preventable death and disease in the United 
States,1 and causes more than 480,000 premature deaths in the US per year. Even decades after 
smoking cessation, former smokers carry an increased risk of lung disease, lung cancer, and 
stroke2-4. Accurate monitoring and detection of tobacco use is therefore critically important for 
identifying at-risk populations who may benefit from cessation assistance and targeted medical 
screening. However, self-reported tobacco smoke exposure and second-hand smoke exposure 
have been shown to underestimate true smoke exposure5,6, and current biomarkers including urine 
cotinine are unable to quantify long-term tobacco smoke exposure7. Developing a robust index of 
cumulative tobacco smoke exposure may enable health care practitioners to identify individuals 
who would benefit from early interventions, including targeted tobacco cessation assistance and 
smoking-related medical screening, which may help minimize smoking-related morbidity and 
mortality. 
 

Smoking-induced epigenetic alterations may offer a unique biologic window into the mechanisms 
by which smoking exerts nocuous effects on the human body and impacts clinical outcomes. 
Tobacco smoke alters DNA methylation at thousands of cytosine-phosphate-guanine (CpG) sites 
in nucleated blood cells8-10, some of which localize to genes associated with lung disease11. 
Epigenetic changes regulate tissue-specific gene expression12, and may provide a link between 
tobacco smoke exposure and smoking-related lung diseases including chronic obstructive 
pulmonary disease13. In this context, constructing a smoking score that indexes smoking-related 
changes in DNA methylation could produce a reliable biomarker of cumulative tobacco smoke 
exposure, which may in turn be useful in predicting incident lung disease and prospective mortality. 
While several prior studies generated DNA methylation-based smoking scores14-16, the scores 
either had limited generalizability14,15 or frequently misclassified former smokers due to limited 
sensitivity16. We therefore propose to construct an innovative DNA methylation-based smoking 
index (DNAm-smoke) using a mixed effects elastic net regression model and Bayesian kernel 
machine regressions in order to classify cumulative tobacco smoke exposure. We will then analyze 
associations of DNAm-smoke with longitudinal lung function, incident airflow limitation, and all-
cause mortality in a large sample of adults.  

 
5. Main Hypothesis/Study Questions: 
 

Aim 1: Determine whether a blood-based biomarker can classify prior tobacco smoke 
exposure. Hypothesis: A mixed effects elastic net regression model and Bayesian kernel machine 
regressions can be implemented in a whole blood dataset to generate a DNA methylation-based 
smoking index (DNAm-smoke) that classifies cumulative tobacco smoke exposure (Figure 1).  
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Aim 2: Determine whether 
DNAm-smoke is associated 
with longitudinal lung 
function. Hypothesis 2a: A 
higher DNAm-smoke score will 
be associated with lower forced 
expiratory volume in 1 second 
(FEV1) and lower FEV1/Forced 
Vital Capacity (FVC) on 
spirometry measurements 
obtained after the baseline visit.  
Hypothesis 2b: A higher DNAm-smoke score will be associated with increased risk of incident 
airflow limitation (FEV1/FVC < 0.7). 
 
Aim 3: Determine whether DNAm-smoke is associated with all-cause mortality.  
Hypothesis: A higher DNAm-smoke score will be associated with increased all-cause mortality. 
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, and 
any anticipated methodologic limitations or challenges if present). 
 
Sample 

• We propose to use data from four cohorts: 
o Atherosclerosis Risk in Communities (ARIC, n = 2,905) 
o Coronary Artery Risk Development in Young Adults (CARDIA, n = 1,042) 
o Normative Aging Study (NAS, n = 794) 
o Women’s Health Initiative (WHI, n = 6,769)  

• Aim 1 Sample: In accordance with prior studies that successfully pooled multiple DNA 
methylation datasets to create a training dataset,17,18 we will pool all participants who 
submitted whole blood for DNA methylation analysis (N = 11,510).  

• Aims 2 and 3 Samples: Our primary analysis strategy for Aims 2 and 3 will be to analyze 
each cohort individually using the available variables in each cohort. Secondarily, we will 
meta-analyze the results to derive a single estimate for each aim. When evaluating 
associations with incident airflow limitation, we will exclude participants with airflow 
limitation present on baseline spirometry.  

 
Exposures:  

• Smoking (total pack-years, duration of smoking, years since quitting smoking) 
• DNA methylation levels extracted from peripheral blood using the HM450 chip during ARIC 

Visits 2 (1990 - 1992) and 3 (1993 - 1995). 

Endpoints: Table 1 outlines which 
endpoints are available in each 
cohort. 

• FEV1, FVC, FEV1/FVC 
measured during ARIC Visits 
2 (1990 - 1992) and 5 (2011 
- 2013) 

• Incident airflow limitation   
• All-cause mortality   
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Covariates:  
• Sociodemographic: age, sex, race/ethnicity, education, clinical site  
• Anthropometric: height, weight, BMI 
• Physical Activity 

o In ARIC, we will adjust for self-reported physical activity as reported on the modified 
Baecke Questionnaire during Visits 1, 3 and 519.  

• Medical comorbidities: hypertension, diabetes, coronary heart disease  
• DNA methylation: Microarray batch, sample, plate, chip, blood cell type composition  

 

Statistical Analysis 
 
General Strategies:  
 
Cohort Differences and Cohort Specific Estimates: As the four cohorts differ in their design, 
population characteristics, data collection methods, and variable structures, our primary analysis 
strategy for Aims 2 and 3 will be to analyze each cohort individually using the extant variables for 
each cohort. This approach will help us to assess the robustness of the newly-derived DNAm-
smoke index to different cohorts while still allowing us to meta-analyze the resulting effect 
estimates to derive a single effect estimate. It also bypasses the need to harmonize data that may 
not be naturally compatible. Lastly, it allows us to leverage other cohorts to conduct sensitivity 
analyses that would otherwise not be possible in certain cohorts. For example, race effects are 
difficult to estimate in ARIC (where it is strongly confounded by center) and NAS (strong 
homogeneity in race). For this variable, we can leverage CARDIA and WHI to assess the impact of 
race on the relationship between DNAm-smoke index and health outcomes. It is otherwise 
important to note that Aim 1 does not require variables beyond smoking pack-years, DNA 
methylation (which were measured using the same platform) and sex. All analyses will be 
performed at Columbia University Irving Medical Center.  
 
Selective Loss to Follow-Up (i.e. Selection Bias). Prior to analyses of Aims 2 and 3, we will 
calculate and apply inverse probability weights of censoring to the appropriate models.20 In 
addition, as a sensitivity analysis, we can apply quantitative bias analysis to estimate the potential 
association under both plausible and extreme scenarios. 
 
Aim 1: If possible, we will obtain unprocessed DNA methylation data and perform uniform data 
processing across cohorts. We will perform batch correction for each individual cohort before 
proceeding with the analyses. To derive the smoking index, we will emulate two prior studies that 
successfully combined multiple DNA methylation datasets to perform elastic net regressions of 
gestational age18 and methylation age,17 and will pool DNA methylation data from the four cohorts. 
Pooling across these four distinct cohorts will enhance our demographic coverage, which will in 
turn increase the generalizability of the smoking index. We will randomly split participants into 
discovery (n = 9,208) and validation samples (n = 2,302). We will use a mixed effects elastic net 
regression model constructed in the R package caret to regress a smoking index in the training 
dataset, which will allow us to account for cohort- and site-specific effects. We will input the 
normalized methylation β-values and the participants’ smoking pack-years and will include sex as a 
covariate. The elastic net regression model will select an array of smoking-related probes. Because 
elastic net regression treats methylation scores as linear and additive, which are assumptions that 
may not hold (pack-years may vary non-linearly with some β-values and some may be interactive 
in predicting DNAm-smoke), we will subsequently fit Bayesian kernel machine regressions (BKMR) 
to the selected probes to derive the final probes that will comprise the smoking index. We will 
calculate the root-mean-square error to assess the fit of the regression model.  
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Aim 2: We will test associations of DNAm-smoke with 
longitudinal FEV1, FVC, and FEV1/FVC using linear 
mixed models. Models will be adjusted for age, sex, 
race/ethnicity, clinical site, education, height, weight, 
and physical activity. We calculated power 
conservatively without considering the efficiency gains 
from longitudinal repeated measurements design. With 
a sample size of 4,741, we will have 79% power to 
detect a minimum effect size of 0.04 standard 
deviation (SD) change in FEV1, FVC, and FEV1/FVC 
per SD increase in DNAm-smoke. We will also test 
associations of DNAm-smoke with incident airflow 
limitation using Cox proportional hazards models. 
Models will be adjusted for age, sex, race/ethnicity, 
clinical site, education, height, weight, and physical activity. Assuming a 10% rate of incident 
airflow limitation during follow-up21, we will have 81% power to detect a minimum hazard ratio (HR) 
of 1.14 per SD increase in DNAm-smoke (Figure 2A).  
 
Aim 3: We will model associations of DNAm-smoke with all-cause mortality using Kaplan-Meier 
curves and Cox proportional hazards models. Cox proportional hazards models will be adjusted for 
age, sex, race/ethnicity, clinical site, study, education, height, weight, physical activity, 
hypertension, diabetes and coronary heart disease. Assuming a mortality rate of 25% during 
follow-up22-24, we will have 85% power to detect a minimum HR of 1.06 per SD increase in DNAm-
smoke (Figure 2B).  
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The present manuscript proposal differs from the following proposals in that we plan to derive a 
novel DNA methylation-based smoking score that reflects cumulative tobacco smoke exposure and 
can be applied in studies without cumulative tobacco smoke measurements. We will then evaluate 
the utility of that smoking score as a predictor of lung function decline and all-cause mortality in 
order to determine its clinical utility and relevance.  

 
2342:  Epigenome-wide association of DNA methylation with smoking in the Atherosclerosis Risk in 
Communities Study 
 
2345:  A prospective study of the association of DNA methylation age with lung function and type 2 
diabetes in the Atherosclerosis Risk in Communities Study 
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